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On the topology of the Henon map 

G D’Alessandro?, P Grassberger$, S IsolaQ and A Politill 
Institute for Scientific Interchange, 1-10133 Torino, Italy 

Received 7 August 1990 

Abstract. Topological invariants of the Henon map are investigated by means of the pruning 
front. First, a long sequence of primary homoclinic tangencies is computed, confirming 
the monotonicity of the front. An algorithm to extract forbidden sequences is then intro- 
duced and discussed. Forbidden sequences of increasing lengths are used to construct a 
hierarchy of regular grammars, represented by directed graphs, which approximate the 
exact grammar arbitrarily well. The topological entropy is estimated as the largest eigenvalue 
of their adjacency matrix. It exhibits an exponential convergence towards the asymptotic 
value with an exponent in agreement with a previous conjecture based on the growth rate 
of the number of forbidden words. 

Symbolic dynamics of unimodal maps of the interval is fairly well understood. For 
many years it has been recognized that a binary generating partition can be introduced 
by splitting the interval into two subsets lying to the left and right of the maximum 
co, respectively. As a consequence, nearly all trajectories are unambiguously encoded 
by infinite strings of bits S(x) = ( s o s I s 2 .  . . ) where s, is either 0 or 1, depending whether 
f ‘ ( x )  is s c o  or >co, respectively [ l ,  21. This allows one to study the resulting chaotic 
behaviour by means of the theory of formal languages [3]. As a matter of fact, the 
grammar of a map with a generic chaotic attractor is not trivial in that it is characterized 
by an infinite number of (irreducible) forbidden words. Also, the set of allowed words 
cannot in general be summarized by regular expressions; hence the induced grammar 
is not regular. Nevertheless, it is relatively simple. The kneading sequence K (i.e. the 
forward symbol sequence of the maximum) contains enough information to determine 
the grammatical rules and, in turn, the topological entropy of the map. More precisely, 
we first define a transformation 7 : S +. T( S )  = ( f l  , f z ,  . . .) for any binary sequence S, 
where 

fk  = f k - ,  + sk (mod 2) k = 1,2, .  . . (1) 

with f ,=O.  
In a slight abuse of notation, we shall use the same name for a semi-infinite sequence 

( t ,  , t 2 , .  . .) and for the real number€ [0,1] whose binary representation is 0 t , t ,  . . . . 
Then the evolution of a point x can be monitored in three different ways 

t Permanent address: Department of Physics, University of Strathclyde, Glasgow, UK. 
$ Permanent address: Physics Department, University of Wuppertal, D-5600 Wuppertal 1, Germany. 
§ Permanent address: Dipanimento di Matematica e Fisica, Universita di Camerino, 1-62032 Italy. 
/ I  Permanent address: Istituto Nazionale di Ottica, 1-50125 Firenze, Italy. 

0305-4470/90/225285 + 10$03.50 e 1990 IOP Publishing Ltd 5285 



5286 G D’Alessandro, P Grassberger, S Isola and A Politi 

where U denotes the shift operator and T is the tent map 
if I E [ o ,  $1 
if T E  [i, 11. 2(1-  7 )  

T ( T )  = (3) 

Since the transformation to 7-values preserves the natural ordering of the real line, 
T ( K )  turns out to be maximal, i.e. 7 ( g m ( K ) )  =s 7 ( K )  for all m 5 0. From this it follows 
that there is at most one irreducible forbidden word of any length. I f  1,: = 0, then 
( s , ,  . . . , 1 - s I )  is forbidden, while no irreducible word of length k exists if tk  = 1 [ l ,  21. 
This can easily be turned into algorithms for constructing the grammars explicitly [4,5]. 

The complexity of chaotic dynamics is much more pronounced already for the 
most natural ZD extension of a unimodal map, the Hinon  map (x, y )  + ( 1  -t y - ax2,  b x ) .  
It is now proven [6] that there is a set of positive measure in the parameters a and b 
for which the map has a strange attractor. Unfortunately, the proof covers only very 
small values of b, and does not include the values a = 1.4, b = 0.3, which have been 
mostly studied since the original paper by HCnon [7] and will also be considered here. 

The problem of constructing a ‘good’ binary partition for this system was practically 
solved in [SI ,  where the authors pointed out that the most natural generalization of 
the critical point of unimodal maps is obtained by considering all ‘primary’ tangencies 
(PT) between stable and unstable manifolds (see also [4]). Denote by C ( x )  the sum 
of the curvatures of the stable and unstable manifold in x. A tangency x is called 
primary if C ( x ) c  C ( f ” ( x ) )  for all n. For a = 1.4, b =0.3, the P T ~  are close to the x 
axis (see figure 1 ) .  

Subsequently, it was proposed [9] to extend the ‘ 7  scheme’ to the 2~ case. With 
each point with S = (. . . s_,sosI . . .), one associates a ‘forward’ variable T ( S )  = 
( I l ,  t ? , .  . .) given by ( 1 )  and a ‘backward’ variable 6 ( S ) = ( d , ,  d 2 , .  . .) with 

d k = d k - I + ( l - s l - k )  ( m o d 2 )  k = 1 ,2 ,  . . . (4) 

0.4 

0.2 

Y 

0 

-0.2 

0 

Figure 1. The binary partition of the Hinon attractor. The circles represent altogether 500 
primary homoclinic tangencies. The entire Hinon attractor is shown in the inset. 
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with do= 1. Application of the original map to the point (x, y )  is equivalent to 
(7, 6 ) +  ( T ( T ) ,  D,(6)) ,  with T given in (3) and 

Analogously to unimodal maps, where all topological properties can be retrieved from 
the kneading sequence (the maximal T), it has been conjectured in [9] that the grammar 
of ZD maps can be extracted from the so-called 'pruning front'. To each primary 
tangency P are attributed two symmetrical values 6,( P )  and & ( P )  = 1 - a+( P )  (since 
so is undetermined), and  a kneading sequence T ( P ) .  For all allowed points with 
6 E [ 6-(  P ) ,  6+( P) ] ,  T should be less than T (  P ) ,  and thus the pruning front is obtained 
by cutting out rectangles ( 7 ,  6 I T >  T ( P ) ,  6 E [ & ( P ) ,  6+(P)]} for all P. The union of 
these rectangles and of their images and pre-images give the set of forbidden points 
(see figure 2). Notice that this picture can be correct only if the pruning front is 
monotonic in the half plane 6 < i .  

6 
0.6 

0.4 

0 2  

I _.._ . . - .- - 
_,I. I , I ,I - 

.#ID I 
111.  1 I 1111 I 

-. 
0 mi 1 1 1  

0 0 2  0 4  0 6  T 0 8  1 

Figure 2. The symbol (7,  6 )  plane of the HCnon map for (a ,  b )  = (1.4,0.3). The pruning 
front is drawn as a full line. The broken line represents the rectangle cut out by the tangency 
point 'A' in figure 1. 

Therefore, both to define a generating partition and  to understand the underlying 
grammar, it is of crucial importance to provide accurate estimates of many homoclinic 
tangencies. To this end, we computed u p  to circa 500 tangencies by following two 
independent approaches, which are briefly summarized below. On segments of the 
unstable manifold close to the fixed point of the HCnon attractor, we selected points 
whose nth iterates fall close to the suspected border of the partition. By further iterating 
i times ( i  = 1,2 ,  . . .) such points, we can determine those ones exhibiting contraction 
along the unstable manifold, with a rate smaller than a pre-assigned value mmin 
depending on i. By simultaneously decreasing mm," and  increasing i, it is possible to 
reach any desired accuracy. Alternatively, besides the local contraction rate, we can 
compute the curvature of the unstable manifold [ lo ]  and thus determine the points 
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corresponding to local maxima after i iterates. We again increase i until these points 
become stable, i.e. until their variation with i becomes smaller than the prescribed 
accuracy. These two methods did indeed give the same set of PTS, with an accuracy of 

As a next step we have verified that the corresponding points of the pruning front 
are monotonically ordered as conjectured in [9]. This seems to be true even in a more 
strict sense: the T and S ordering is exactly equivalent to the ordering in the real line. 
This implies of course that the FTS can be joined by a relatively smooth polygon with 
no hang-overs and no sharp bends. We conjecture that this property holds down to 
arbitrarily small length scales, and is responsible for the success of the method. 

More precisely, we found that the length of the polygon connecting all PTS is finite 
( L  = 0.587 038 57), implying that it is not a fractal curve. It is minimal if the points are 
ordered as above. This also allows another definition of FTS: the set of PTS is a subset 
of all homoclinic tangencies such that ( a )  every other tangency is a (pre-)image of a 
IT, and (b)  the length of the polygon connecting them is minimal. 

Let us now briefly describe the algorithm used to extract the irreducible forbidden 
sequences. In the I D  case we have a single T, each ‘0’ in which gives rise to a pruned 
sequence, independently of the past bits of a given trajectory. In the Htnon map, we 
have to add information on the past. Corresponding to rectangles in the (T, 8) plane 
(see figure 2), forbidden words are obtained by concatenating the forbidden ‘future’ 
sequence with the corresponding past. Technically, this is done by first ordering the 
tangency points ( T ~ ,  8,) such that 8,3 8,-, and T, > T , - ~ .  Assume that the expansions 
of 8, and a,-, first differ at the mth bit, and that T, and T,-, differ for the first time at 
the nth bit. Assume further that the ‘zero’ bits of r, occur at positions n, ,  n,, . . . . Then, 
the words forbidden by (T,, 8,) are just 

with nk 3 n. 
We have checked this procedure in the Lozi map, where the binary partition is 

trivial so that we can compare this method with that presented in [ll].  From this 
analysis it turns out that the pruning front procedure works well apart from some cases 
where the shortest forbidden sequences are not found immediately. For instance, in 
the Lozi map with a = 1.6 and b = 0.4 we found that 001010010 is forbidden and 
irreducible. But its ‘sister’ 101010010 is forbidden too, as it contains the forbidden 
word 1010100 as a substring. Therefore, the shorter sequence 01010010 obtained by 
deleting the first bit is actually forbidden. 

Notice that this means that we can miss some forbidden words of length s n, if we 
use the pruning front for searching only for words up to this length. Accordingly, we 
conclude that the pruning front gives the correct answer in the infinite-length limit, 
but it can provide slightly wrong.finite-length estimates. This is in contrast to the 
method given in [ll]. 

For the HCnon map, we have been able to estimate all (184 in total) forbidden 
words up to length 31. From this, we constructed the grammars which forbid exactly 
all words of length I by building the corresponding deterministic directed graphs [3]. 
For increasing I, this gives increasingly fine approximations to the exact grammar of 
the HCnon map. After minimization [3], the largest graph (for 1 = 31) had 676 nodes. 

The growth of the number of orbits with their length is governed by the topological 
entropy 

(S-mT S-m+1, * * 3 s n k - l  9 1 - s n k )  (6) 
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The same growth rate holds for periodic points. Thus, the topological entropy is one 
of the most important characteristics of a chaotic system. In principle, there are several 
methods to estimate it. A comparison between some of them is reported in figure 3. 

From the very definition ( 7 )  one can extrapolate the asymptotic value, using for 
N,, either the number of periodic points [12] (crosses in figure 3) or the total number 
of allowed sequences (diamonds). The latter are easily determined from our directed 
graphs by iterating the adjacency matrices [13]. Let us denote by A"' the adjacency 
matrix of the graph forbidding words of length up to 1. Then 

N,, =C ( A ' f l n ) l k .  
k 

for n s 1. 

of the inverse topological I-function [14], which can be written in the form 
A more sophisticated method is provided by determining the leading zero z = e-h 

X 

l / I ( Z )  = n (1 - Z n p )  = 1 - C k Z k  
P k = l  

(9) 

where the product extends over all primitive cycles. Their length is denoted by np. 

adjacency matrices A"'. Consider the functions 
We should point out that there exists a close relationship between l ( z )  and the 

l / l " ' ( z ) = d e t ( l  -zA"))=exp[trlog(l-zA"))]=exp( - 1 = -tr(Aif' ,i)). z n  
n = ~  n 

By expressing the traces in terms of prime cycles, it is straightforward to realize that 

This connection provides an alternative way to compute the first coefficients c k  of I - ' ,  
and thus to check the enumeration of periodic orbits in [12]. We should, however, 
point out that care has to be taken since a new forbidden word of length n can forbid 
a cycle of length np < n. Notice that the coefficients ck in (9) are known if and only if 

0.70 t " " i ' " ' " " l " " ~  
I 

1 

25 n 30 10 15 20 

Figure 3. Topological entropy ( in  bits) obtained from the largest eigenvalue of graphs 
(circles), from the leading zero of truncated versions of l / i  (squares) and from estimates 
h,, = log, N , , / n  with N,, being either the number of periodic points (crosses) or the number 
of allowed sequences (diamonds), of length n. 
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all cycles of period s k  are enumerated. Thus, the coefficients cif' of 1/5"' have to 
change if a new cycle of length s k i s  found, and agreement between c k  and CL" can, 
in principle, be arbitrarily delayed. Nevertheless, we found that ck = c i 3 ' )  for k S 23 
(for the algorithm used to compute c(k3'), see below). 

It was proposed in [15] to estimate 1/5 by simply truncating the sequence in (9) 
after c k ,  if all cycles are known up to length k and not beyond. This gives the squares 
in figure 3. We see that it yields hardly any improvements over the naive methods, in 
agreement with what was found in [16] for the Ruelle zeta function. 

In the last approach we have estimated the topological entropy from the largest 
eigenvalue of the adjacency matrices [ 131 associated with the directed graphs mentioned 
above (circles in figure 3). More precisely, 

where A \ "  is the largest eigenvalue of A"'. Numerically, this is easily obtained by using 
(8) with n >> 1. Figure 3 shows that this method not only yields exact upper bounds on 
h, but also the best convergence to the asymptotic value h. As the last method always 
gives upper bounds on h, it is natural to study its convergence by plotting log( h,-, - h, )  
against 1. This is shown in figure 4, where a reasonable exponential convergence is 
indeed seen. 

hl = log A \" (12) 

-4 t 
-5 F 
Figure 4. A ,  = log( hl-, - h , )  against I ,  where I represents the maximum length of forbidden 
sequences taken into account. The slope of the straight line is h / D  (see text). 

To explain such a behaviour we have extended to 2~ maps a result known for 
unimodal maps. In [ 5 ] ,  it has been shown that h, converges in the latter case exponen- 
tially with an exponent given by the topological entropy itself, hl = h + B(e-lh). This 
is easily understood from the fact [2] that ck = +1 for unimodal maps, which in turn 
is related to the observation that there is at most one forbidden word of any given length. 

The main difference between the I D  and 2~ case concerns the number of forbidden 
words N f ( l )  of given length 1. In [ l l ]  it has been conjectured that 

where D is the dimension of the attractor (multifractal corrections are neglected). If 
we assume that the order of magnitude of the variation of the topological entropy due 
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to the addition of a new forbidden word of length 1 depends only on 1, then the analysis 
of the I D  case suggests that this contribution should be e-h'. By summing over all 
irreducible disallowed sequences with the same length we obtain 

+hi 
hl-, - h, = e x p ( D ) .  

The slope of the straight line in figure 4 is h /D ,  as predicted from (14). This good 
agreement confirms our previous considerations. We see that the convergence is lowered 
with respect to the I D  case, but it is still exponential. It appears reasonable to assume 
that the exponent in (14) controls the convergence of finite estimates of metric properties 
as well. 

It is interesting to understand the growth rate of forbidden words in terms of the 
pruning front. In the ID  case, it is just a straight line and it cuts away a single box in 
the (6 ,  T) plane. The growth rate in ZD maps should depend on the j-dependence of 
T,. More precisely, it should be strictly related to the fractal dimension of the set 
{ T, I j = 1,2, . . .} obtained by projecting the points of the pruning front onto the T axis. 

Let K denote the number of equal bits in the future of two homoclinic tangencies, 
whose distance in real space is E .  Thus 

E e K A + =  C(1) (15) 

where A, is the positive Lyapunov exponent. Moreover, if two such tangencies have 
n bits in common in the past, it is also true that 

E e-"'-- -0(1) (16) 
where A -  is the negative cxponent. As a consequence, K can be expressed as a function 
of n 

Now, passing to the symbol plane, if we want to cover the projection onto the T axis 
with boxes of size E ,  = 2-",  we need ehn such boxes. Combining everything together 
and using the Kaplan-Yorke relation, we obtain 

h ( D - 1 )  
D, = 

log2 ' 

This yields D,=O.18 for the HCnon map with standard parameter values. A direct 
numerical simulation performed with a box-counting algorithm and 500 PTS, yields 
D,=O.177. Equation (18) can be immediately related to (13). Indeed, the maximum 
length of forbidden words which can be reached by observing K bits in the past and 
n bits in the future, is 1 = k + n. Thus, by expressing the number eh" in terms of 1 rather 
than E we recover (13). 

Finally, let us discuss the behaviour of the zeta function, and of its approximations 
l" ' (z) .  At variance with the I D  case, both the size of the adjacency matrices A'" and 
the coefficients ck increase exponentially. This makes their computation more cumber- 
some, despite the fact that the matrices are very sparse. Indeed, the number of nodes 
in the lth graph (and thus the size of A"') should increase asymptotically with the 
same exponent as the number of forbidden words of length Si. 

The most effective approach we have found is to evaluate the coefficients of 
det( 1 - zA"') by computing the cycles of the graph. It is well known (see for instance 
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[ 5 ] )  that each closed self-avoiding path of length m on the graph contributes with -1 
to the mth coefficient. More generally, any combination of r non-overlapping such 
cycles with total length k adds a term (- l ) r  to the coefficient c k .  These are the only 
contributions to the determinant. We have computed all the cycles up to length 31, by 
starting from the original graph and progressively removing one node at each step 
paying the price of increasing the number of links among the remaining nodes. Each 
time the removal of a node yields a closed loop we obtain a new cycle; if we obtain 
a self-touching walk we discard it and finally, if the link is too long we discard it as 
well (this is the only way to keep the number of links as small as possible, avoiding 
uncontrollable explosions). The results for the first 30 coefficients in the HCnon map 
are reported in table 1 for the graphs of order 30 and 3 1, and compared to the coefficients 
ck of l /J(z)  obtained by the method of [12]. The agreement between c i 3 ' )  and ck 
indicates that our list of forbidden words correctly yields all cycles of length S23. 

We see that the c k  grow very slowly. It seems plausible that their growth rate is 
also related to the growth rate of forbidden words, but it is impossible from our results 
to perform a reliable numerical check of this hypothesis. In order to obtain a better 

Table 1. List of number N ,  ( k )  of forbidden words of length k, and of coefficients c p o l ,  
c:~') and c k .  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

0 
0 
0 
3 
0 
0 
2 
3 
3 
0 
2 
5 
3 
2 
2 
2 
5 
4 
4 
8 
8 
6 
6 

10 
7 

11 
12 
22 
12 
22 
20 

1 
1 

-1 
1 

-1 
1 
3 
1 

-3 
-1 

3 
-1 

5 
-5 
-3 

5 
9 

-3 
-5 

3 
-1 
-7 
17 

-1 
-1 1 

15 
-5 

-13 
17 

-7 
- 

1 
1 

-1 
1 

-1 
1 
3 
1 

-3 
-1 

3 
-1  

5 
-5 
-3 

5 
9 

-3 
-5 

3 
-1 
-7 
17 

-2 
-10 

16 
-6 

-12 
16 

-8 
-22 

1 
1 

-1 
1 

-1 
1 
3 
1 

-3 
-1 

3 
-1 

5 
-5 
-3 

5 
9 

-3 
-5 

3 
-1 
-7 
17 

-3 
-11 

19 
-7 

-13 
- 

- 

- 
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Figure 5. Eigenvalues of the graph of order 31 (dots) compared with zeros of the inverse 
[-function truncated at the 23rd coefficient. The unit circle is drawn for the sake of reference. 
Eigenvalues very close to the origin are not drawn because their determination was 
numerically unstable. 

understanding of the situation, we report in figure 5 the eigenvalues of the graph (dots) 
corresponding to forbidden sequences up to length 31, compared with the zeros of the 
inverse I-function (circles) truncated at the 23rd coefficient. We see that the largest 
ones agree, as we should expect. The majority of eigenvalues concentrate at 121 = 1, 
and they are not related to zeros of 115. 

Our final conclusion is that both the generating partition of [8] and the idea of a 
pruning front proposed in [9] have passed extremely precise numerical tests. Also the 
ideas put forward in [ l l ]  were verified substantially. The most easy and precise 
understanding of the topological dynamics was not through periodic cycles, but by 
directly studying the homoclinic tangency points defining the pruning front. Once this 
is understood, the transition to a description in terms of periodic cycles is possible 
and interesting. 

One of our main results is a very precise and not too cumbersome estimate of the 
topological entropy. Such estimates might turn out to be essential if one wants to 
understand the dependence of the HCnon attractor on the parameters a and b. We 
also expect that similar methods might be useful in analysing other chaotic systems. 
A detailed analysis of the Lozi map shall appear elsewhere [17]. 
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